Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 102
Filter
2.
Science ; 383(6683): 622-629, 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38271490

ABSTRACT

Paclitaxel is a well known anticancer compound. Its biosynthesis involves the formation of a highly functionalized diterpenoid core skeleton (baccatin III) and the subsequent assembly of a phenylisoserinoyl side chain. Despite intensive investigation for half a century, the complete biosynthetic pathway of baccatin III remains unknown. In this work, we identified a bifunctional cytochrome P450 enzyme [taxane oxetanase 1 (TOT1)] in Taxus mairei that catalyzes an oxidative rearrangement in paclitaxel oxetane formation, which represents a previously unknown enzyme mechanism for oxetane ring formation. We created a screening strategy based on the taxusin biosynthesis pathway and uncovered the enzyme responsible for the taxane oxidation of the C9 position (T9αH1). Finally, we artificially reconstituted a biosynthetic pathway for the production of baccatin III in tobacco.


Subject(s)
Alkaloids , Cytochrome P-450 Enzyme System , Metabolic Engineering , Paclitaxel , Plant Proteins , Taxoids , Taxus , Alkaloids/biosynthesis , Alkaloids/genetics , Bridged-Ring Compounds/chemistry , Bridged-Ring Compounds/metabolism , Ethers, Cyclic/chemistry , Ethers, Cyclic/metabolism , Paclitaxel/biosynthesis , Taxoids/metabolism , Taxus/enzymology , Taxus/genetics , Cytochrome P-450 Enzyme System/chemistry , Cytochrome P-450 Enzyme System/genetics , Plant Proteins/chemistry , Plant Proteins/genetics
3.
Plant Methods ; 19(1): 70, 2023 Jul 08.
Article in English | MEDLINE | ID: mdl-37422677

ABSTRACT

BACKGROUND: The plasma membrane (PM) proteins function in a highly dynamic state, including protein trafficking and protein homeostasis, to regulate various biological processes. The dwell time and colocalization of PM proteins are considered to be two important dynamic features determining endocytosis and protein interactions, respectively. Dwell-time and colocalization detected using traditional fluorescence microscope techniques are often misestimated due to bulk measurement. In particular, analyzing these two features of PM proteins at the single-molecule level with spatiotemporal continuity in plant cells remains greatly challenging. RESULTS: We developed a single molecular (SM) kymograph method, which is based on variable angle-total internal reflection fluorescence microscopy (VA-TIRFM) observation and single-particle (co-)tracking (SPT) analysis, to accurately analyze the dwell time and colocalization of PM proteins in a spatial and temporal manner. Furthermore, we selected two PM proteins with distinct dynamic behaviors, including AtRGS1 (Arabidopsis regulator of G protein signaling 1) and AtREM1.3 (Arabidopsis remorin 1.3), to analyze their dwell time and colocalization upon jasmonate (JA) treatment by SM kymography. First, we established new 3D (2D+t) images to view all trajectories of the interest protein by rotating these images, and then we chose the appropriate point without changing the trajectory for further analysis. Upon JA treatment, the path lines of AtRGS1-YFP appeared curved and short, while the horizontal lines of mCherry-AtREM1.3 demonstrated limited changes, indicating that JA might initiate the endocytosis of AtRGS1. Analysis of transgenic seedlings coexpressing AtRGS1-YFP/mCherry-AtREM1.3 revealed that JA induces a change in the trajectory of AtRGS1-YFP, which then merges into the kymography line of mCherry-AtREM1.3, implying that JA increases the colocalization degree between AtRGS1 and AtREM1.3 on the PM. These results illustrate that different types of PM proteins exhibit specific dynamic features in line with their corresponding functions. CONCLUSIONS: The SM-kymograph method provides new insight into quantitively analyzing the dwell time and correlation degree of PM proteins at the single-molecule level in living plant cells.

4.
Nat Commun ; 14(1): 3098, 2023 05 29.
Article in English | MEDLINE | ID: mdl-37248234

ABSTRACT

During the processes of rice domestication and improvement, a trade-off effect between grain number and grain weight was a major obstacle for increasing yield. Here, we identify a critical gene COG1, encoding the transcription factor OsMADS17, with a 65-bp deletion in the 5' untranslated region (5' UTR) presented in cultivated rice increasing grain number and grain weight simultaneously through decreasing mRNA translation efficiency. OsMADS17 controls grain yield by regulating multiple genes and that the interaction with one of them, OsAP2-39, has been characterized. Besides, the expression of OsMADS17 is regulated by OsMADS1 directly. It indicates that OsMADS1-OsMADS17-OsAP2-39 participates in the regulatory network controlling grain yield, and downregulation of OsMADS17 or OsAP2-39 expression can further improve grain yield by simultaneously increasing grain number and grain weight. Our findings provide insights into understanding the molecular basis co-regulating rice yield-related traits, and offer a strategy for breeding higher-yielding rice varieties.


Subject(s)
Oryza , Oryza/genetics , Oryza/metabolism , Plant Breeding , Edible Grain/genetics , Transcription Factors/metabolism , Phenotype
5.
Mol Plant ; 16(6): 1016-1030, 2023 06 05.
Article in English | MEDLINE | ID: mdl-37077045

ABSTRACT

The nuclear pore complex (NPC), the sole exchange channel between the nucleus and cytoplasm, is composed of several subcomplexes, among which the central barrier determines the permeability/selectivity of the NPC to dominate the nucleocytoplasmic trafficking essential for many important signaling events in yeast and mammals. How plant NPC central barrier controls selective transport is a crucial question remaining to be elucidated. In this study, we uncovered that phase separation of the central barrier is critical for the permeability and selectivity of plant NPC in the regulation of various biotic stresses. Phenotypic assays of nup62 mutants and complementary lines showed that NUP62 positively regulates plant defense against Botrytis cinerea, one of the world's most disastrous plant pathogens. Furthermore, in vivo imaging and in vitro biochemical evidence revealed that plant NPC central barrier undergoes phase separation to regulate selective nucleocytoplasmic transport of immune regulators, as exemplified by MPK3, essential for plant resistance to B. cinerea. Moreover, genetic analysis demonstrated that NPC phase separation plays an important role in plant defense against fungal and bacterial infection as well as insect attack. These findings reveal that phase separation of the NPC central barrier serves as an important mechanism to mediate nucleocytoplasmic transport of immune regulators and activate plant defense against a broad range of biotic stresses.


Subject(s)
Nuclear Pore , Plants , Animals , Active Transport, Cell Nucleus , Nuclear Pore/metabolism , Cell Nucleus/metabolism , Cytoplasm/metabolism , Mammals
8.
Front Plant Sci ; 14: 1112146, 2023.
Article in English | MEDLINE | ID: mdl-36875569

ABSTRACT

Background: Ratoon rice cropping has been shown to provide new insights into overcoming the current challenges of rice production in southern China. However, the potential mechanisms impacting yield and grain quality under rice ratooning remain unclear. Methods: In this study, changes in yield performance and distinct improvements in grain chalkiness in ratoon rice were thoroughly investigated, using physiological, molecular and transcriptomic analysis. Results: Rice ratooning induced an extensive carbon reserve remobilization in combination with an impact on grain filling, starch biosynthesis, and ultimately, an optimization in starch composition and structure in the endosperm. Furthermore, these variations were shown to be associated with a protein-coding gene: GF14f (encoding GF14f isoform of 14-3-3 proteins) and such gene negatively impacts oxidative and environmental resistance in ratoon rice. Conclusion: Our findings suggested that this genetic regulation by GF14f gene was the main cause leading to changes in rice yield and grain chalkiness improvement of ratoon rice, irrespective of seasonal or environmental effects. A further significance was to see how yield performance and grain quality of ratoon rice were able to be achieved at higher levels via suppression of GF14f.

10.
J Sci Food Agric ; 103(7): 3569-3578, 2023 May.
Article in English | MEDLINE | ID: mdl-36257928

ABSTRACT

BACKGROUND: Ratoon rice cropping has been introduced for increased rice production in southern China and, as a result, has been becoming increasingly popular. However, only a few studies have addressed the regulatory mechanism underlying grain quality improvement induced by rice ratooning. RESULTS: In this study, parameters of rice quality, including head rice yield, chalky grain percentage, grain chalkiness degree, hardness and taste value, were shown to be much improved in the ratooning season rice as compared to its counterparts main and late cropping season rice, indicating that such an improvement was irrespective of seasonal effects. In addition, the nutritional components of grains varied greatly between main-cropping season rice, ratooning season rice and late-cropping season rice and displayed a significant correlation with rice quality. Finally, the regulatory mechanism underlying rice quality improvement revealed that gibberellin-dominated regulation and plant hormone signal transduction jointly contributed to a decrease in formation of chalky grains. CONCLUSION: This work improves our knowledge on rice quality improvement under rice ratooning, particularly on the regulatory mechanism of plant hormones. © 2022 Society of Chemical Industry.


Subject(s)
Oryza , Oryza/genetics , Quality Improvement , Transcriptome , Edible Grain/genetics , Seasons
11.
Mol Plant ; 16(1): 23-42, 2023 01 02.
Article in English | MEDLINE | ID: mdl-36056561

ABSTRACT

Phytohormones integrate external environmental and developmental signals with internal cellular responses for plant survival and multiplication in changing surroundings. Jasmonate (JA), which might originate from prokaryotes and benefit plant terrestrial adaptation, is a vital phytohormone that regulates diverse developmental processes and defense responses against various environmental stresses. In this review, we first provide an overview of ligand-receptor binding techniques used for the characterization of phytohormone-receptor interactions, then introduce the identification of the receptor COI1 and active JA molecules, and finally summarize recent advances on the regulation of JA perception and its evolution.


Subject(s)
Arabidopsis Proteins , Plant Growth Regulators , Plant Growth Regulators/metabolism , Arabidopsis Proteins/metabolism , Ligands , Cyclopentanes/metabolism , Oxylipins/metabolism , Plants/metabolism , Perception , Gene Expression Regulation, Plant
12.
J Exp Bot ; 74(4): 1244-1257, 2023 02 13.
Article in English | MEDLINE | ID: mdl-36197803

ABSTRACT

Plants and microbial pathogens often engage in a fierce war that determines their survival. Host plants have evolved sophisticated regulatory mechanisms to fine-tune defense responses to counter attacks from pathogens, while pathogens often hijack the lipid-derived phytohormone jasmonate to cause hormonal signaling imbalances for efficient infection. This review focuses on the jasmonate-based warfare between host plants and pathogenic intruders, and further discusses approaches to uncouple plant growth and defense tradeoffs in crop breeding.


Subject(s)
Plant Breeding , Plant Diseases , Plants , Plant Growth Regulators , Cyclopentanes , Oxylipins
13.
Sci China Life Sci ; 65(1): 33-92, 2022 01.
Article in English | MEDLINE | ID: mdl-34881420

ABSTRACT

Rice (Oryza sativa L.) is one of the most important crops in the world. Since the completion of rice reference genome sequences, tremendous progress has been achieved in understanding the molecular mechanisms on various rice traits and dissecting the underlying regulatory networks. In this review, we summarize the research progress of rice biology over past decades, including omics, genome-wide association study, phytohormone action, nutrient use, biotic and abiotic responses, photoperiodic flowering, and reproductive development (fertility and sterility). For the roads ahead, cutting-edge technologies such as new genomics methods, high-throughput phenotyping platforms, precise genome-editing tools, environmental microbiome optimization, and synthetic methods will further extend our understanding of unsolved molecular biology questions in rice, and facilitate integrations of the knowledge for agricultural applications.


Subject(s)
Crops, Agricultural/genetics , Genome, Plant , Oryza/genetics , Oryza/physiology , Plant Growth Regulators/physiology , Epigenomics , Food Parasitology , Genome-Wide Association Study , Phenotype , Signal Transduction
14.
Front Plant Sci ; 12: 628328, 2021.
Article in English | MEDLINE | ID: mdl-34489985

ABSTRACT

Amino acids are the building blocks of biomacromolecules in organisms, among which isoleucine (Ile) is the precursor of JA-Ile, an active molecule of phytohormone jasmonate (JA). JA is essential for diverse plant defense responses against biotic and abiotic stresses. Botrytis cinerea is a necrotrophic nutritional fungal pathogen that causes the second most severe plant fungal disease worldwide and infects more than 200 kinds of monocot and dicot plant species. In this study, we demonstrated that Ile application enhances plant resistance against B. cinerea in Arabidopsis, which is dependent on the JA receptor COI1 and the jasmonic acid-amido synthetase JAR1. The mutant lib with higher Ile content in leaves exhibits enhanced resistance to B. cinerea infection. Furthermore, we found that the exogenous Ile application moderately enhanced plant resistance to B. cinerea in various horticultural plant species, including lettuce, rose, and strawberry, suggesting a practical and effective strategy to control B. cinerea disease in agriculture. These results together showed that the increase of Ile could positively regulate the resistance of various plants to B. cinerea by enhancing JA signaling, which would offer potential applications for crop protection.

15.
Plant J ; 107(1): 67-76, 2021 07.
Article in English | MEDLINE | ID: mdl-33860570

ABSTRACT

Strigolactones play crucial roles in regulating plant architecture and development, as endogenous hormones, and orchestrating symbiotic interactions with fungi and parasitic plants, as components of root exudates. rac-GR24 is currently the most widely used strigolactone analog and serves as a reference compound in investigating the action of strigolactones. In this study, we evaluated a suite of debranones and found that 2-nitrodebranone (2NOD) exhibited higher biological activity than rac-GR24 in various aspects of plant growth and development in Arabidopsis, including hypocotyl elongation inhibition, root hair promotion and senescence acceleration. The enhanced activity of 2NOD in promoting AtD14-SMXL7 and AtD14-MAX2 interactions indicates that the molecular structure of 2NOD is a better match for the ligand perception site pocket of D14. Moreover, 2NOD showed lower activity than rac-GR24 in promoting Orobanche cumana seed germination, suggesting its higher ability to control plant architecture than parasitic interactions. In combination with the improved stability of 2NOD, these results demonstrate that 2NOD is a strigolactone analog that can specifically mimic the activity of strigolactones and that 2NOD exhibits strong potential as a tool for studying the strigolactone signaling pathway in plants.


Subject(s)
Arabidopsis/drug effects , Arabidopsis/growth & development , Heterocyclic Compounds, 3-Ring/pharmacology , Lactones/pharmacology , Plant Growth Regulators/pharmacology , Arabidopsis Proteins/chemistry , Arabidopsis Proteins/metabolism , Carrier Proteins/metabolism , Co-Repressor Proteins/metabolism , Furans/chemistry , Furans/pharmacology , Germination/drug effects , Hypocotyl/drug effects , Molecular Docking Simulation , Orobanche/drug effects , Orobanche/growth & development , Plant Growth Regulators/chemistry , Plant Weeds/drug effects , Plant Weeds/growth & development , Receptors, Cell Surface/chemistry , Receptors, Cell Surface/metabolism , Seeds/drug effects , Water/chemistry
16.
Plant Physiol ; 185(4): 1411-1428, 2021 04 23.
Article in English | MEDLINE | ID: mdl-33793945

ABSTRACT

Seeds of the root parasitic plant Striga hermonthica can sense very low concentrations of strigolactones (SLs) exuded from host roots. The S. hermonthica hyposensitive to light (ShHTL) proteins are putative SL receptors, among which ShHTL7 reportedly confers sensitivity to picomolar levels of SL when expressed in Arabidopsis thaliana. However, the molecular mechanism underlying ShHTL7 sensitivity is unknown. Here we determined the ShHTL7 crystal structure and quantified its interactions with various SLs and key interacting proteins. We established that ShHTL7 has an active-site pocket with broad-spectrum response to different SLs and moderate affinity. However, in contrast to other ShHTLs, we observed particularly high affinity of ShHTL7 for F-box protein AtMAX2. Furthermore, ShHTL7 interacted with AtMAX2 and with transcriptional regulator AtSMAX1 in response to nanomolar SL concentration. ShHTL7 mutagenesis analyses identified surface residues that contribute to its high-affinity binding to AtMAX2 and residues in the ligand binding pocket that confer broad-spectrum response to SLs with various structures. Crucially, yeast-three hybrid experiments showed that AtMAX2 confers responsiveness of the ShHTL7-AtSMAX1 interaction to picomolar levels of SL in line with the previously reported physiological sensitivity. These findings highlight the key role of SL-induced MAX2-ShHTL7-SMAX1 complex formation in determining the sensitivity to SL. Moreover, these data suggest a strategy to screen for compounds that could promote suicidal seed germination at physiologically relevant levels.


Subject(s)
Heterocyclic Compounds, 3-Ring/metabolism , Host-Parasite Interactions/physiology , Lactones/metabolism , Ligands , Plant Roots/metabolism , Plant Weeds/metabolism , Striga/physiology , Striga/parasitology , Host-Parasite Interactions/genetics , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Signal Transduction/genetics , Signal Transduction/physiology , Striga/genetics
17.
Sci China Life Sci ; 64(8): 1215-1226, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33774798

ABSTRACT

Seed size, an important agronomic trait determining crop yield, is regulated by multiple plant hormones. Jasmonate (JA) is a key phytohormone required for various plant defenses and diverse developmental processes. Here, we defined an essential role for JA in control of seed size. Through comprehensive analysis of genetic mutants in JA pathway, we showed that seed size was repressed by positive components in JA pathway including COI1, MYC2 (and its homologues), MED25 and JAR1, but promoted by JA signaling repressor JAZ proteins such as JAZ6. We further demonstrated that exogenous application of JA suppressed seed size in a COI1-dependent manner. Our results reveal that JA signaling represses seed size and negatively regulates integument cell proliferation. Elucidation of jasmonate action in seed size control would advance our understanding of inner mechanism of seed size regulation.


Subject(s)
Cyclopentanes/metabolism , Oxylipins/metabolism , Plant Growth Regulators/genetics , Plant Growth Regulators/metabolism , Seeds/genetics , Seeds/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Cell Proliferation/genetics , Gene Expression Regulation, Plant , Repressor Proteins/genetics , Repressor Proteins/metabolism
18.
Tree Physiol ; 41(3): 460-471, 2021 03 06.
Article in English | MEDLINE | ID: mdl-33032325

ABSTRACT

Natural rubber, a strategically essential raw material used in manufacturing throughout the world, is produced from coagulated and refined latex of rubber tree (Hevea brasiliensis). It is known that phytohormone jasmonate (JA) plays an essential role in regulating latex biosynthesis. However, it is unclear how the JA signal is sensed in a rubber tree. Here, we showed that H. brasiliensis CORONATINE-INSENSITIVE 1 (HbCOI1) acts as a receptor that perceives JA to recruit H. brasiliensis JASMONATE ZIM DOMAIN1 (HbJAZ1) for signal transduction. We found that HbCOI1 restores male sterility and JA responses of the coi1-1 mutant in Arabidopsis. The identification of a JA receptor in the rubber tree is essential for elucidating the molecular mechanisms underlying JA-regulated latex biosynthesis. Our results elucidate the mechanism of JA perception in H. brasiliensis and also provide an efficient strategy to identify JA receptors in woody plants.


Subject(s)
Hevea , Amino Acids , Cyclopentanes/pharmacology , Gene Expression Regulation, Plant , Hevea/genetics , Hevea/metabolism , Indenes , Latex , Male , Oxylipins , Signal Transduction
20.
BMC Plant Biol ; 20(1): 64, 2020 Feb 07.
Article in English | MEDLINE | ID: mdl-32033528

ABSTRACT

BACKGROUND: Gibberellin (GA) and jasmonate (JA) are two essential phytohormones for filament elongation in Arabidopsis. GA and JA trigger degradation of DELLAs and JASMONATE ZIM-domain (JAZ) proteins through SCFSLY1 and SCFCOI1 separately to activate filament elongation. In JA pathway, JAZs interact with MYB21 and MYB24 to control filament elongation. However, little is known how DELLAs regulate filament elongation. RESULTS: Here we showed that DELLAs interact with MYB21 and MYB24, and that R2R3 domains of MYB21 and MYB24 are responsible for interaction with DELLAs. Furthermore, we demonstrated that DELLA and JAZ proteins coordinately repress the transcriptional function of MYB21 and MYB24 to inhibit filament elongation. CONCLUSION: We discovered that DELLAs interact with MYB21 and MYB24, and that DELLAs and JAZs attenuate the transcriptional function of MYB21 and MYB24 to control filament elongation. This study reveals a novel cross-talk mechanism of GA and JA in the regulation of filament elongation in Arabidopsis.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/genetics , Flowers/growth & development , Transcription Factors/genetics , Arabidopsis/growth & development , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Cyclopentanes/metabolism , Flowers/genetics , Gene Expression Regulation, Plant/drug effects , Gibberellins/metabolism , Oxylipins/metabolism , Plant Growth Regulators/metabolism , Plants, Genetically Modified/genetics , Plants, Genetically Modified/growth & development , Plants, Genetically Modified/metabolism , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...